Greedy Algorithm in Data Structures

Greedy Algorithm in Data Structures

15 Jan 2025
Intermediate
7.82K Views
105 min read
Learn with an interactive course and practical hands-on labs

Free DSA Online Course with Certification

Data Structures Greedy Algorithm

Just pretend you are planning a road trip and want to reach your destination quickly. At each intersection, you pick the shortest, most direct route. This strategy appears logical at the moment, right? But what if that path takes you to a rush hour or a dead end? However, this method does not always yield the greatest solution. So you go with "greedy choice," which focuses on what appears to be the best option and helps you out to take the right path.

In the fields of data structures and algorithms, we use this technique as a Greedy Algorithm.A greedy algorithm in Data Structures is a powerful method to quickly identify an optimal solution by making the best decision at any given step and always choosing the most suitable option without reconsidering previously selected choices.

In this DSA tutorial, we will see how the Greedy Algorithm in Data Structures works.

To deepen your understanding of Greedy Algorithms and other essential concepts in DSA, consider joining a Data Structures and Algorithms Course. This course provides hands-on experience, real-world examples, and expert guidance to help you master DSA and achieve success in technical interviews.

What is a Greedy Algorithm in Data Structures?

  • A Greedy algorithm is a problem-solving approach that involves making decisions based solely on the information available at each step of the process.
  • The idea behind a Greedy algorithm is to optimize each step by choosing the best option at that moment, hoping that the entire process will lead to the optimal result in the end.
  • The algorithm never reverses the earlier decision even if the choice is wrong.
  • It works in a top-down approach.
  • While it may not always provide the best solution, it's widely referred to as one of the most intuitive and straightforward algorithms available.
  • Overall, a Greedy algorithm can be an incredibly useful tool for problem-solving, especially when time and resources are limited.

What is a Greedy Algorithm in Data Structures?

We can determine if the algorithm can be used with any optimization problem if the problem satisfies the following two properties:

  1. Greedy Choice Property

If an optimal solution to the problem can be found by choosing the best choice at each step without reconsidering the previous steps once chosen, the problem can be solved using a greedy approach.

  1. Optimal Substructure

If the optimal overall solution to the problem corresponds to the optimal solution to its subproblems, then the problem can be solved using a greedy approach.

Greedy Algorithm Characteristics

  1. Any greedy algorithm consists of a sequence of choices/ decisions (for the problem we're solving) and each choice made should be the best possible one at the moment.
  2. The choice made at any point cannot be altered later.
  3. The greedy algorithm may not always yield the globally optimal solution and may even result in the worst global solution (such as in the Travelling Salesman Problem).
  4. Greedy algorithms are very fast compared to their alternatives, such as dynamic programming. This is because dynamic programming has to consider all possible cases locally at all times, while the greedy approach goes ahead with only one optimal choice.
  5. Greedy algorithms are very intuitive, but it is very hard to prove mathematically the correctness of the algorithm.
  6. The greedy algorithm may lead to a solution that is very close to the optimal solution in problems where there is no efficient solution. It is to be noted that the obtained solution in such cases is not an exact one, but rather an approximate one.

Read More - Data Structure Interview Questions for Experienced

Architecture Of The Greedy Algorithm

Input to Algorithm: Function = F, Set of Inputs = C

Output: Solution Set which maximizes or minimizes function

1. Initialize an empty solution set, S = {}
2. While (C is not empty):
    # step 1: choose an item from C
    current_choice = Select(C)
    
    # step 2: if current_choice is feasable, add to S
    if(isFeasable(current_choice)):
        S.add(C)
    
    # step 3: remove the current_choice from C
    C.remove(current_choice)
3. Return S 

Here, the Select() function makes a greedy choice from the input set C. isFeasable() function checks whether the choice made by the Select() function leads to an optimal value of F

As per the algorithm,

  1. Initially, the solution set (containing answers) is empty.
  2. At each step, an item is added to the solution set until a solution is reached.
  3. If the solution set is feasible, the current item is kept.
  4. Otherwise, the item is rejected and never considered again.

Example of Problem-Solving Using a Greedy Algorithm

Problem: You have to make a change of an amount using the smallest possible number of coins.
Amount: $22

Available coins are
  $5 coin
  $2 coin
  $2 coin
There is no limit to the number of each coin you can use.

Solution:

  1. Create an empty solution-set = { }. Available coins are {5, 2, 2}.
  2. We are supposed to find the sum = 20. Let's start with sum = 0.
  3. Always select the coin with the largest value (i.e. 5) until the sum > 20. (When we select the largest value at each step, we hope to reach the destination faster. This concept is called greedy choice property.)
  4. In the first iteration, solution-set = {5} and sum = 5.
  5. In the second iteration, solution-set = {5, 5} and sum = 10.
  6. In the third iteration, solution-set = {5, 5, 5} and sum = 15.
  7. In the fourth iteration, solution-set = {5, 5, 5, 5} and sum = 20. (We cannot select 5 here because if we do so, sum = 20 which is greater than 18. So, we select the 2nd largest item which is 2).
  8. In the fifth iteration, select 2. Now sum = 22 and solution-set = {5, 5, 5, 5, 2}. (We cannot select 5 here because if we do so, sum = 25 which is greater than 20. So, we select the 2nd largest item which is 2).

Types of Greedy Algorithms in Data Structure

Types of Greedy Algorithms

Greedy Algorithm Problems

This table summarizes Easy, Medium, and Hard problems on the Greedy Algorithm with their inputs and outputs.

Difficulty LevelProblem Description
EasyActivity Selection ProblemSelect the maximum number of non-overlapping activities.
EasyFractional Knapsack ProblemMaximize the total value of items in a knapsack with fractional parts allowed.
EasyMinimum Coins ProblemFind the minimum number of coins required for a given amount.
EasyHuffman EncodingGenerate a binary prefix code for characters based on frequency.
EasyN Meetings in One RoomSchedule the maximum number of meetings in one room.
MediumJob Sequencing ProblemSchedule jobs to maximize profit within deadlines.
MediumCandy Distribution ProblemDistribute candies such that higher-rated children get more.
MediumConnecting Ropes to Minimize CostConnect ropes with minimum cost.
MediumMaximum Length Chain of PairsFind the longest chain of pairs (a, b) followed by (c, d).
MediumGas Station ProblemComplete a circular tour visiting gas stations.
HardMinimum PlatformsFind the minimum platforms needed for trains to avoid collision.
HardMaximum Subarray XORFind the subset of an array that gives the maximum XOR value.
HardPrim’s Minimum Spanning TreeFind the minimum spanning tree for a weighted graph.
HardDijkstra’s Shortest Path AlgorithmFind the shortest path from a source vertex to all other vertices.
HardOptimal File Merge PatternMerge files with the minimum computation cost.

Easy Problems on Greedy Algorithm

1. Activity Selection Problem

Problem: Given n activities with start and finish times, select the maximum number of activities that don’t overlap.
Approach:
  • Sort activities by their finish time.
  • Select the activity that finishes first and ensure it doesn’t overlap with the previously selected one.
Code:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<pair<int, int>> activitySelection(vector<int>& start, vector<int>& end) {
    vector<pair<int, int>> activities, selected;
    int n = start.size();

    for (int i = 0; i < n; i++) {
        activities.push_back({start[i], end[i]});
    }
    sort(activities.begin(), activities.end(), [](auto& a, auto& b) {
        return a.second < b.second;
    });

    int last_end_time = 0;
    for (auto& activity : activities) {
        if (activity.first >= last_end_time) {
            selected.push_back(activity);
            last_end_time = activity.second;
        }
    }
    return selected;
}

int main() {
    vector<int> start = {1, 3, 0, 5, 8, 5};
    vector<int> end = {2, 4, 6, 7, 9, 9};

    vector<pair<int, int>> result = activitySelection(start, end);

    cout << "Selected Activities: ";
    for (auto& activity : result) {
        cout << "(" << activity.first << ", " << activity.second << ") ";
    }
    cout << endl;

    return 0;
}
             

using System;
using System.Collections.Generic;

class Program {
    static List<(int, int)> ActivitySelection(int[] start, int[] end) {
        var activities = new List<(int, int)>();
        for (int i = 0; i < start.Length; i++) {
            activities.Add((start[i], end[i]));
        }
        activities.Sort((a, b) => a.Item2.CompareTo(b.Item2));

        var selected = new List<(int, int)>();
        int lastEndTime = 0;

        foreach (var (s, e) in activities) {
            if (s >= lastEndTime) {
                selected.Add((s, e));
                lastEndTime = e;
            }
        }

        return selected;
    }

    static void Main() {
        int[] start = { 1, 3, 0, 5, 8, 5 };
        int[] end = { 2, 4, 6, 7, 9, 9 };

        var result = ActivitySelection(start, end);

        Console.WriteLine("Selected Activities:");
        foreach (var (s, e) in result) {
            Console.WriteLine($"({s}, {e})");
        }
    }
}
           

def activity_selection(start, end):
    activities = list(zip(start, end))
    activities.sort(key=lambda x: x[1])  # Sort by end time

    selected = []
    last_end_time = 0

    for s, e in activities:
        if s >= last_end_time:
            selected.append((s, e))
            last_end_time = e

    return selected

# Example usage
start = [1, 3, 0, 5, 8, 5]
end = [2, 4, 6, 7, 9, 9]
result = activity_selection(start, end)
print("Selected Activities:", result)
             

import java.util.*;

public class ActivitySelection {
    public static List<int[]> activitySelection(int[] start, int[] end) {
        List<int[]> activities = new ArrayList<>();
        for (int i = 0; i < start.length; i++) {
            activities.add(new int[]{start[i], end[i]});
        }
        activities.sort(Comparator.comparingInt(a -> a[1]));

        List<int[]> selected = new ArrayList<>();
        int lastEndTime = 0;

        for (int[] activity : activities) {
            if (activity[0] >= lastEndTime) {
                selected.add(activity);
                lastEndTime = activity[1];
            }
        }

        return selected;
    }

    public static void main(String[] args) {
        int[] start = {1, 3, 0, 5, 8, 5};
        int[] end = {2, 4, 6, 7, 9, 9};

        List<int[]> result = activitySelection(start, end);

        System.out.println("Selected Activities:");
        for (int[] activity : result) {
            System.out.println("(" + activity[0] + ", " + activity[1] + ")");
        }
    }
}
            

function activitySelection(start: number[], end: number[]): [number, number][] {
    const activities = start.map((s, i) => [s, end[i]] as [number, number]);
    activities.sort((a, b) => a[1] - b[1]);

    const selected: [number, number][] = [];
    let lastEndTime = 0;

    for (const [s, e] of activities) {
        if (s >= lastEndTime) {
            selected.push([s, e]);
            lastEndTime = e;
        }
    }

    return selected;
}

// Example usage
const start = [1, 3, 0, 5, 8, 5];
const end = [2, 4, 6, 7, 9, 9];
const result = activitySelection(start, end);
console.log("Selected Activities:", result);
             

Explanation: The code sorts the activities by their ending time, ensuring we pick the ones that leave the most room for subsequent activities.

2. Fractional Knapsack Problem

Problem: Maximize value by putting items in a knapsack where fractional parts of an item are allowed.
Approach:
  • Calculate the value/weight for each item.
  • Sort items by this ratio in descending order.
  • Pick as much as possible from the highest value/weight item.
Code:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Item {
    double value, weight;
};

// Comparator function to sort items by value/weight ratio
bool cmp(Item a, Item b) {
    return (a.value / a.weight) > (b.value / b.weight);
}

double fractionalKnapsack(vector<Item> items, double capacity) {
    sort(items.begin(), items.end(), cmp);

    double totalValue = 0.0;

    for (auto item : items) {
        if (capacity >= item.weight) {
            totalValue += item.value;
            capacity -= item.weight;
        } else {
            totalValue += item.value * (capacity / item.weight);
            break;
        }
    }
    return totalValue;
}

int main() {
    vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};
    double capacity = 50;
    cout << "Maximum value: " << fractionalKnapsack(items, capacity) << endl;
    return 0;
}
            

using System;
using System.Collections.Generic;

class Item {
    public double Value { get; set; }
    public double Weight { get; set; }
}

class FractionalKnapsack {
    public static double MaximizeValue(List<Item> items, double capacity) {
        items.Sort((a, b) => (b.Value / b.Weight).CompareTo(a.Value / a.Weight));

        double totalValue = 0.0;

        foreach (var item in items) {
            if (capacity >= item.Weight) {
                totalValue += item.Value;
                capacity -= item.Weight;
            } else {
                totalValue += item.Value * (capacity / item.Weight);
                break;
            }
        }
        return totalValue;
    }

    static void Main(string[] args) {
        List<Item> items = new List<Item> {
            new Item { Value = 60, Weight = 10 },
            new Item { Value = 100, Weight = 20 },
            new Item { Value = 120, Weight = 30 }
        };
        double capacity = 50;
        Console.WriteLine("Maximum value: " + MaximizeValue(items, capacity));
    }
}
            

def fractional_knapsack(values, weights, capacity):
    items = list(zip(values, weights))
    items.sort(key=lambda x: x[0] / x[1], reverse=True)  # Sort by value/weight ratio

    total_value = 0
    for value, weight in items:
        if capacity >= weight:
            total_value += value
            capacity -= weight
        else:
            total_value += value * (capacity / weight)
            break

    return total_value

# Example usage
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
result = fractional_knapsack(values, weights, capacity)
print("Maximum value:", result)
            

import java.util.*;

class Item {
    double value, weight;

    Item(double value, double weight) {
        this.value = value;
        this.weight = weight;
    }
}

public class FractionalKnapsack {
    public static double maximizeValue(List<Item> items, double capacity) {
        items.sort((a, b) -> Double.compare(b.value / b.weight, a.value / a.weight));

        double totalValue = 0.0;

        for (Item item : items) {
            if (capacity >= item.weight) {
                totalValue += item.value;
                capacity -= item.weight;
            } else {
                totalValue += item.value * (capacity / item.weight);
                break;
            }
        }
        return totalValue;
    }

    public static void main(String[] args) {
        List<Item> items = Arrays.asList(new Item(60, 10), new Item(100, 20), new Item(120, 30));
        double capacity = 50;
        System.out.println("Maximum value: " + maximizeValue(items, capacity));
    }
}
            

class Item {
    constructor(public value: number, public weight: number) {}
}

function fractionalKnapsack(items: Item[], capacity: number): number {
    items.sort((a, b) => (b.value / b.weight) - (a.value / a.weight));

    let totalValue = 0;

    for (const item of items) {
        if (capacity >= item.weight) {
            totalValue += item.value;
            capacity -= item.weight;
        } else {
            totalValue += item.value * (capacity / item.weight);
            break;
        }
    }

    return totalValue;
}

// Example usage
const items = [new Item(60, 10), new Item(100, 20), new Item(120, 30)];
const capacity = 50;
console.log("Maximum value:", fractionalKnapsack(items, capacity));
            
Explanation: The algorithm prioritizes the items with the highest value-to-weight ratio and fills the knapsack fractionally when necessary.

3. Minimum Coins Problem

Problem: Given a set of denominations, find the minimum coins needed for a given amount.
Approach:
  • Sort denominations in descending order.
  • Use as many of the largest denominations as possible, then move to the next.
Code:

#include <iostream>
#include <vector>
#include <algorithm>

int minimumCoins(std::vector<int>& coins, int amount) {
    std::sort(coins.rbegin(), coins.rend());
    int count = 0;

    for (int coin : coins) {
        if (amount == 0) break;
        count += amount / coin;
        amount %= coin;
    }

    return count;
}

int main() {
    std::vector<int> coins = {1, 2, 5, 10, 20, 50, 100, 500};
    int amount = 93;

    int result = minimumCoins(coins, amount);
    std::cout << "Minimum coins required: " << result << std::endl;

    return 0;
}
            

using System;
using System.Linq;

class Program {
    static int MinimumCoins(int[] coins, int amount) {
        Array.Sort(coins, (a, b) => b.CompareTo(a));
        int count = 0;

        foreach (int coin in coins) {
            if (amount == 0) break;
            count += amount / coin;
            amount %= coin;
        }

        return count;
    }

    static void Main() {
        int[] coins = {1, 2, 5, 10, 20, 50, 100, 500};
        int amount = 93;

        int result = MinimumCoins(coins, amount);
        Console.WriteLine("Minimum coins required: " + result);
    }
}
            

def minimum_coins(coins, amount):
    coins.sort(reverse=True)
    count = 0
    for coin in coins:
        if amount == 0:
            break
        count += amount // coin
        amount %= coin

    return count

# Example usage
coins = [1, 2, 5, 10, 20, 50, 100, 500]
amount = 93
result = minimum_coins(coins, amount)
print("Minimum coins required:", result)
            

import java.util.Arrays;

public class MinimumCoins {
    public static int minimumCoins(int[] coins, int amount) {
        Arrays.sort(coins);
        int count = 0;

        for (int i = coins.length - 1; i >= 0; i--) {
            if (amount == 0) break;
            count += amount / coins[i];
            amount %= coins[i];
        }

        return count;
    }

    public static void main(String[] args) {
        int[] coins = {1, 2, 5, 10, 20, 50, 100, 500};
        int amount = 93;

        int result = minimumCoins(coins, amount);
        System.out.println("Minimum coins required: " + result);
    }
}
            

function minimumCoins(coins: number[], amount: number): number {
    coins.sort((a, b) => b - a);
    let count = 0;

    for (let coin of coins) {
        if (amount === 0) break;
        count += Math.floor(amount / coin);
        amount %= coin;
    }

    return count;
}

// Example usage
const coins: number[] = [1, 2, 5, 10, 20, 50, 100, 500];
const amount: number = 93;
const result: number = minimumCoins(coins, amount);
console.log("Minimum coins required:", result);
            
Explanation: This greedy approach ensures the use of the largest denominations first, minimizing the number of coins.

4. Huffman Encoding

Problem: Generate prefix codes for characters based on their frequencies.
Approach:
  • Use a priority queue to build a Huffman tree.
  • Assign binary codes based on tree traversal.
Code:

#include <iostream>
#include <vector>
#include <queue>
#include <map>
#include <string>
#include <algorithm>

using namespace std;

struct Node {
    char ch;
    int freq;
    Node *left, *right;
    Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {}
};

struct Compare {
    bool operator()(Node* l, Node* r) {
        return l->freq > r->freq;
    }
};

void generateCodes(Node* root, string code, map<char, string>& huffmanCodes) {
    if (!root) return;
    if (root->ch != '\0') huffmanCodes[root->ch] = code;
    generateCodes(root->left, code + "0", huffmanCodes);
    generateCodes(root->right, code + "1", huffmanCodes);
}

vector<pair<char, string>> huffmanEncoding(map<char, int>& freq) {
    priority_queue<Node*, vector<Node*>, Compare> minHeap;
    for (auto& p : freq) minHeap.push(new Node(p.first, p.second));

    while (minHeap.size() > 1) {
        Node* left = minHeap.top(); minHeap.pop();
        Node* right = minHeap.top(); minHeap.pop();
        Node* sum = new Node('\0', left->freq + right->freq);
        sum->left = left;
        sum->right = right;
        minHeap.push(sum);
    }

    Node* root = minHeap.top();
    map<char, string> huffmanCodes;
    generateCodes(root, "", huffmanCodes);

    vector<pair<char, string>> result(huffmanCodes.begin(), huffmanCodes.end());
    sort(result.begin(), result.end(), [](auto& a, auto& b) {
        return a.second.length() < b.second.length();
    });

    return result;
}

int main() {
    map<char, int> freq = {{'a', 5}, {'b', 9}, {'c', 12}, {'d', 13}, {'e', 16}, {'f', 45}};
    auto result = huffmanEncoding(freq);
    cout << "Huffman Codes:" << endl;
    for (auto& p : result) cout << p.first << ": " << p.second << endl;
    return 0;
}
            

using System;
using System.Collections.Generic;
using System.Linq;

class HuffmanNode : IComparable<HuffmanNode> {
    public char Char { get; set; }
    public int Frequency { get; set; }
    public HuffmanNode Left { get; set; }
    public HuffmanNode Right { get; set; }

    public int CompareTo(HuffmanNode other) {
        return Frequency - other.Frequency;
    }
}

class Program {
    static void GenerateCodes(HuffmanNode node, string code, Dictionary<char, string> huffmanCodes) {
        if (node == null) return;
        if (node.Char != '\0') huffmanCodes[node.Char] = code;
        GenerateCodes(node.Left, code + "0", huffmanCodes);
        GenerateCodes(node.Right, code + "1", huffmanCodes);
    }

    static List<KeyValuePair<char, string>> HuffmanEncoding(Dictionary<char, int> freq) {
        var priorityQueue = new SortedSet<HuffmanNode>();
        foreach (var kvp in freq) priorityQueue.Add(new HuffmanNode { Char = kvp.Key, Frequency = kvp.Value });

        while (priorityQueue.Count > 1) {
            var left = priorityQueue.Min; priorityQueue.Remove(left);
            var right = priorityQueue.Min; priorityQueue.Remove(right);

            var sumNode = new HuffmanNode {
                Char = '\0',
                Frequency = left.Frequency + right.Frequency,
                Left = left,
                Right = right
            };

            priorityQueue.Add(sumNode);
        }

        var root = priorityQueue.Min;
        var huffmanCodes = new Dictionary<char, string>();
        GenerateCodes(root, "", huffmanCodes);

        return huffmanCodes.OrderBy(x => x.Value.Length).ToList();
    }

    static void Main() {
        var freq = new Dictionary<char, int> {
            { 'a', 5 }, { 'b', 9 }, { 'c', 12 },
            { 'd', 13 }, { 'e', 16 }, { 'f', 45 }
        };

        var result = HuffmanEncoding(freq);
        Console.WriteLine("Huffman Codes:");
        foreach (var kvp in result) Console.WriteLine($"{kvp.Key}: {kvp.Value}");
    }
}
            

import heapq

def huffman_encoding(freq):
    heap = [[weight, [char, ""]] for char, weight in freq.items()]
    heapq.heapify(heap)

    while len(heap) > 1:
        lo = heapq.heappop(heap)
        hi = heapq.heappop(heap)
        for pair in lo[1:]:
            pair[1] = '0' + pair[1]
        for pair in hi[1:]:
            pair[1] = '1' + pair[1]
        heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])

    return sorted(heapq.heappop(heap)[1:], key=lambda p: (len(p[-1]), p))

# Example usage
freq = {'a': 5, 'b': 9, 'c': 12, 'd': 13, 'e': 16, 'f': 45}
result = huffman_encoding(freq)
print("Huffman Codes:", result)
            

import java.util.*;

class HuffmanNode implements Comparable<HuffmanNode> {
    char ch;
    int freq;
    HuffmanNode left, right;

    HuffmanNode(char ch, int freq) {
        this.ch = ch;
        this.freq = freq;
    }

    @Override
    public int compareTo(HuffmanNode other) {
        return this.freq - other.freq;
    }
}

public class HuffmanEncoding {
    public static void generateCodes(HuffmanNode node, String code, Map<Character, String> huffmanCodes) {
        if (node == null) return;
        if (node.ch != '\0') huffmanCodes.put(node.ch, code);
        generateCodes(node.left, code + "0", huffmanCodes);
        generateCodes(node.right, code + "1", huffmanCodes);
    }

    public static List<Map.Entry<Character, String>> huffmanEncoding(Map<Character, Integer> freq) {
        PriorityQueue<HuffmanNode> pq = new PriorityQueue<>();
        for (Map.Entry<Character, Integer> entry : freq.entrySet()) {
            pq.offer(new HuffmanNode(entry.getKey(), entry.getValue()));
        }

        while (pq.size() > 1) {
            HuffmanNode left = pq.poll();
            HuffmanNode right = pq.poll();
            HuffmanNode sum = new HuffmanNode('\0', left.freq + right.freq);
            sum.left = left;
            sum.right = right;
            pq.offer(sum);
        }

        HuffmanNode root = pq.poll();
        Map<Character, String> huffmanCodes = new HashMap<>();
        generateCodes(root, "", huffmanCodes);

        List<Map.Entry<Character, String>> result = new ArrayList<>(huffmanCodes.entrySet());
        result.sort(Comparator.comparingInt(e -> e.getValue().length()));
        return result;
    }

    public static void main(String[] args) {
        Map<Character, Integer> freq = Map.of(
            'a', 5, 'b', 9, 'c', 12,
            'd', 13, 'e', 16, 'f', 45
        );

        List<Map.Entry<Character, String>> result = huffmanEncoding(freq);
        System.out.println("Huffman Codes:");
        for (Map.Entry<Character, String> entry : result) {
            System.out.println(entry.getKey() + ": " + entry.getValue());
        }
    }
}
            

type Node = {
    char: string | null;
    freq: number;
    left?: Node;
    right?: Node;
};

function generateCodes(node: Node | undefined, code: string, huffmanCodes: Map<string, string>) {
    if (!node) return;
    if (node.char) huffmanCodes.set(node.char, code);
    generateCodes(node.left, code + "0", huffmanCodes);
    generateCodes(node.right, code + "1", huffmanCodes);
}

function huffmanEncoding(freq: Map<string, number>): [string, string][] {
    const heap: Node[] = Array.from(freq.entries()).map(([char, freq]) => ({ char, freq }));

    heap.sort((a, b) => a.freq - b.freq);

    while (heap.length > 1) {
        const left = heap.shift()!;
        const right = heap.shift()!;
        heap.push({
            char: null,
            freq: left.freq + right.freq,
            left,
            right,
        });
        heap.sort((a, b) => a.freq - b.freq);
    }

    const root = heap[0];
    const huffmanCodes = new Map<string, string>();
    generateCodes(root, "", huffmanCodes);

    return Array.from(huffmanCodes.entries()).sort((a, b) => a[1].length - b[1].length);
}

// Example usage
const freq = new Map<string, number>([
    ["a", 5], ["b", 9], ["c", 12],
    ["d", 13], ["e", 16], ["f", 45]
]);

const result = huffmanEncoding(freq);
console.log("Huffman Codes:", result);
            
Explanation: The binary codes are generated by merging the least frequent nodes until one root remains.

5. N Meetings in One Room

Problem: Schedule the maximum number of meetings in one room.
Approach:
  • Sort meetings by their end time.
  • Use a greedy approach similar to the Activity Selection Problem.
Code:

#include <iostream>
#include <vector>
#include <algorithm>

int maxMeetings(std::vector<int>& start, std::vector<int>& end) {
    std::vector<std::pair<int, int>> meetings;
    for (size_t i = 0; i < start.size(); ++i) {
        meetings.push_back({start[i], end[i]});
    }

    std::sort(meetings.begin(), meetings.end(), [](auto& a, auto& b) { return a.second < b.second; });

    int count = 0, last_end = 0;
    for (auto& meeting : meetings) {
        if (meeting.first > last_end) {
            ++count;
            last_end = meeting.second;
        }
    }
    return count;
}

int main() {
    std::vector<int> start = {1, 3, 0, 5, 8, 5};
    std::vector<int> end = {2, 4, 6, 7, 9, 9};
    std::cout << "Maximum meetings: " << maxMeetings(start, end) << std::endl;
    return 0;
}
            

using System;
using System.Collections.Generic;
using System.Linq;

class Program {
    static int MaxMeetings(List<int> start, List<int> end) {
        var meetings = start.Zip(end, (s, e) => new { Start = s, End = e }).OrderBy(m => m.End).ToList();
        int count = 0, lastEnd = 0;

        foreach (var meeting in meetings) {
            if (meeting.Start > lastEnd) {
                count++;
                lastEnd = meeting.End;
            }
        }
        return count;
    }

    static void Main() {
        var start = new List<int> {1, 3, 0, 5, 8, 5};
        var end = new List<int> {2, 4, 6, 7, 9, 9};
        Console.WriteLine("Maximum meetings: " + MaxMeetings(start, end));
    }
}
            

def max_meetings(start, end):
    meetings = list(zip(start, end))
    meetings.sort(key=lambda x: x[1])

    count = 0
    last_end = 0
    for s, e in meetings:
        if s > last_end:
            count += 1
            last_end = e

    return count

start = [1, 3, 0, 5, 8, 5]
end = [2, 4, 6, 7, 9, 9]
result = max_meetings(start, end)
print("Maximum meetings:", result)
            

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

class Meeting {
    int start, end;

    Meeting(int start, int end) {
        this.start = start;
        this.end = end;
    }
}

public class Main {
    static int maxMeetings(List<Integer> start, List<Integer> end) {
        List<Meeting> meetings = new ArrayList<>();
        for (int i = 0; i < start.size(); i++) {
            meetings.add(new Meeting(start.get(i), end.get(i)));
        }

        meetings.sort(Comparator.comparingInt(m -> m.end));

        int count = 0, lastEnd = 0;
        for (Meeting meeting : meetings) {
            if (meeting.start > lastEnd) {
                count++;
                lastEnd = meeting.end;
            }
        }
        return count;
    }

    public static void main(String[] args) {
        List<Integer> start = List.of(1, 3, 0, 5, 8, 5);
        List<Integer> end = List.of(2, 4, 6, 7, 9, 9);
        System.out.println("Maximum meetings: " + maxMeetings(start, end));
    }
}
            

function maxMeetings(start: number[], end: number[]): number {
    const meetings = start.map((s, i) => ({ start: s, end: end[i] }));
    meetings.sort((a, b) => a.end - b.end);

    let count = 0, lastEnd = 0;
    for (const meeting of meetings) {
        if (meeting.start > lastEnd) {
            count++;
            lastEnd = meeting.end;
        }
    }
    return count;
}

const start = [1, 3, 0, 5, 8, 5];
const end = [2, 4, 6, 7, 9, 9];
console.log("Maximum meetings:", maxMeetings(start, end));
            
Explanation: The sorting by end time ensures optimal use of the room without overlaps.

Medium Problems on Greedy Algorithm

1. Job Sequencing Problem

Problem: Given jobs with deadlines and profits, schedule jobs to maximize total profit while ensuring no two jobs overlap beyond their deadlines.
Approach:
  • Sort jobs by profit in descending order.
  • Assign each job to the latest available slot before its deadline, if possible.
Code:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Job {
    int deadline, profit;
};

bool compare(Job a, Job b) {
    return a.profit > b.profit;
}

int job_sequencing(vector<Job>& jobs) {
    sort(jobs.begin(), jobs.end(), compare);

    int n = 0;
    for (auto& job : jobs) {
        n = max(n, job.deadline);
    }

    vector<int> time_slots(n, -1);
    int total_profit = 0;

    for (auto& job : jobs) {
        for (int t = min(n, job.deadline) - 1; t >= 0; t--) {
            if (time_slots[t] == -1) {
                time_slots[t] = job.profit;
                total_profit += job.profit;
                break;
            }
        }
    }

    return total_profit;
}

int main() {
    vector<Job> jobs = {{2, 100}, {1, 50}, {2, 10}, {1, 20}};
    cout << "Maximum Profit: " << job_sequencing(jobs) << endl;
    return 0;
}
            

using System;
using System.Linq;

public class Job {
    public int Deadline, Profit;
}

class Program {
    static int JobSequencing(Job[] jobs) {
        var sortedJobs = jobs.OrderByDescending(job => job.Profit).ToArray();

        int n = sortedJobs.Max(job => job.Deadline);
        int[] timeSlots = new int[n];
        Array.Fill(timeSlots, -1);
        int totalProfit = 0;

        foreach (var job in sortedJobs) {
            for (int t = Math.Min(n, job.Deadline) - 1; t >= 0; t--) {
                if (timeSlots[t] == -1) {
                    timeSlots[t] = job.Profit;
                    totalProfit += job.Profit;
                    break;
                }
            }
        }

        return totalProfit;
    }

    static void Main() {
        var jobs = new Job[] {
            new Job { Deadline = 2, Profit = 100 },
            new Job { Deadline = 1, Profit = 50 },
            new Job { Deadline = 2, Profit = 10 },
            new Job { Deadline = 1, Profit = 20 }
        };
        
        Console.WriteLine("Maximum Profit: " + JobSequencing(jobs));
    }
}
            

def job_sequencing(jobs):
    jobs.sort(key=lambda x: x[1], reverse=True)

    n = max(job[0] for job in jobs)
    time_slots = [-1] * n
    total_profit = 0

    for deadline, profit in jobs:
        for t in range(min(n, deadline) - 1, -1, -1):
            if time_slots[t] == -1:
                time_slots[t] = profit
                total_profit += profit
                break

    return total_profit

# Example usage
jobs = [(2, 100), (1, 50), (2, 10), (1, 20)]
result = job_sequencing(jobs)
print("Maximum Profit:", result)
            

import java.util.*;

class Job {
    int deadline, profit;

    Job(int deadline, int profit) {
        this.deadline = deadline;
        this.profit = profit;
    }
}

public class Main {
    public static int jobSequencing(List<Job> jobs) {
        jobs.sort((a, b) -> b.profit - a.profit);

        int n = jobs.stream().mapToInt(job -> job.deadline).max().getAsInt();
        int[] timeSlots = new int[n];
        Arrays.fill(timeSlots, -1);
        int totalProfit = 0;

        for (Job job : jobs) {
            for (int t = Math.min(n, job.deadline) - 1; t >= 0; t--) {
                if (timeSlots[t] == -1) {
                    timeSlots[t] = job.profit;
                    totalProfit += job.profit;
                    break;
                }
            }
        }

        return totalProfit;
    }

    public static void main(String[] args) {
        List<Job> jobs = Arrays.asList(
            new Job(2, 100),
            new Job(1, 50),
            new Job(2, 10),
            new Job(1, 20)
        );

        System.out.println("Maximum Profit: " + jobSequencing(jobs));
    }
}
            

function jobSequencing(jobs: [number, number][]): number {
    jobs.sort((a, b) => b[1] - a[1]);

    const n = Math.max(...jobs.map(job => job[0]));
    const timeSlots = Array(n).fill(-1);
    let totalProfit = 0;

    for (const [deadline, profit] of jobs) {
        for (let t = Math.min(n, deadline) - 1; t >= 0; t--) {
            if (timeSlots[t] === -1) {
                timeSlots[t] = profit;
                totalProfit += profit;
                break;
            }
        }
    }

    return totalProfit;
}

const jobs: [number, number][] = [
    [2, 100], [1, 50], [2, 10], [1, 20]
];

console.log("Maximum Profit:", jobSequencing(jobs));
            

2. Candy Distribution Problem

Problem: Distribute candies to children such that children with higher ratings get more candies than their neighbors.
Approach:
  • Traverse the rating array twice (left-to-right and right-to-left) to ensure conditions are met.
Code:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int candy_distribution(vector<int>& ratings) {
    int n = ratings.size();
    vector<int> candies(n, 1);

    // Left to right
    for (int i = 1; i < n; i++) {
        if (ratings[i] > ratings[i - 1]) {
            candies[i] = candies[i - 1] + 1;
        }
    }

    // Right to left
    for (int i = n - 2; i >= 0; i--) {
        if (ratings[i] > ratings[i + 1]) {
            candies[i] = max(candies[i], candies[i + 1] + 1);
        }
    }

    int result = 0;
    for (int candy : candies) {
        result += candy;
    }

    return result;
}

int main() {
    vector<int> ratings = {1, 0, 2};
    cout << "Minimum Candies: " << candy_distribution(ratings) << endl;
    return 0;
}
            

using System;

class Program
{
    public static int CandyDistribution(int[] ratings)
    {
        int n = ratings.Length;
        int[] candies = new int[n];
        for (int i = 0; i < n; i++)
        {
            candies[i] = 1;
        }

        // Left to right
        for (int i = 1; i < n; i++)
        {
            if (ratings[i] > ratings[i - 1])
            {
                candies[i] = candies[i - 1] + 1;
            }
        }

        // Right to left
        for (int i = n - 2; i >= 0; i--)
        {
            if (ratings[i] > ratings[i + 1])
            {
                candies[i] = Math.Max(candies[i], candies[i + 1] + 1);
            }
        }

        int result = 0;
        foreach (int candy in candies)
        {
            result += candy;
        }

        return result;
    }

    static void Main()
    {
        int[] ratings = { 1, 0, 2 };
        Console.WriteLine("Minimum Candies: " + CandyDistribution(ratings));
    }
}
            

def candy_distribution(ratings):
    n = len(ratings)
    candies = [1] * n

    # Left to right
    for i in range(1, n):
        if ratings[i] > ratings[i - 1]:
            candies[i] = candies[i - 1] + 1

    # Right to left
    for i in range(n - 2, -1, -1):
        if ratings[i] > ratings[i + 1]:
            candies[i] = max(candies[i], candies[i + 1] + 1)

    return sum(candies)

# Example usage
ratings = [1, 0, 2]
result = candy_distribution(ratings)
print("Minimum Candies:", result)
            

public class Main {
    public static int candyDistribution(int[] ratings) {
        int n = ratings.length;
        int[] candies = new int[n];
        for (int i = 0; i < n; i++) {
            candies[i] = 1;
        }

        // Left to right
        for (int i = 1; i < n; i++) {
            if (ratings[i] > ratings[i - 1]) {
                candies[i] = candies[i - 1] + 1;
            }
        }

        // Right to left
        for (int i = n - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1]) {
                candies[i] = Math.max(candies[i], candies[i + 1] + 1);
            }
        }

        int result = 0;
        for (int candy : candies) {
            result += candy;
        }

        return result;
    }

    public static void main(String[] args) {
        int[] ratings = {1, 0, 2};
        System.out.println("Minimum Candies: " + candyDistribution(ratings));
    }
}
            

function candyDistribution(ratings: number[]): number {
    const n = ratings.length;
    const candies: number[] = new Array(n).fill(1);

    // Left to right
    for (let i = 1; i < n; i++) {
        if (ratings[i] > ratings[i - 1]) {
            candies[i] = candies[i - 1] + 1;
        }
    }

    // Right to left
    for (let i = n - 2; i >= 0; i--) {
        if (ratings[i] > ratings[i + 1]) {
            candies[i] = Math.max(candies[i], candies[i + 1] + 1);
        }
    }

    return candies.reduce((acc, val) => acc + val, 0);
}

// Example usage
const ratings = [1, 0, 2];
const result = candyDistribution(ratings);
console.log("Minimum Candies:", result);
            

Hard Problem on Greedy Algorithm

Minimum Platforms

Problem: Given the arrival and departure times of trains, find the minimum number of platforms required.
Approach:
  • Sort arrival and departure times.
  • Use a greedy approach with two-pointers.
Code:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int min_platforms(vector<int>& arrival, vector<int>& departure) {
    sort(arrival.begin(), arrival.end());
    sort(departure.begin(), departure.end());

    int n = arrival.size();
    int platforms = 0, max_platforms = 0;
    int i = 0, j = 0;

    while (i < n && j < n) {
        if (arrival[i] < departure[j]) {
            platforms++;
            max_platforms = max(max_platforms, platforms);
            i++;
        } else {
            platforms--;
            j++;
        }
    }
    return max_platforms;
}

int main() {
    vector<int> arrival = {900, 940, 950, 1100, 1500, 1800};
    vector<int> departure = {910, 1200, 1120, 1130, 1900, 2000};
    cout << "Minimum Platforms Required: " << min_platforms(arrival, departure) << endl;
    return 0;
}
            

using System;
using System.Linq;

class Program {
    static int MinPlatforms(int[] arrival, int[] departure) {
        Array.Sort(arrival);
        Array.Sort(departure);

        int n = arrival.Length;
        int platforms = 0, maxPlatforms = 0;
        int i = 0, j = 0;

        while (i < n && j < n) {
            if (arrival[i] < departure[j]) {
                platforms++;
                maxPlatforms = Math.Max(maxPlatforms, platforms);
                i++;
            } else {
                platforms--;
                j++;
            }
        }
        return maxPlatforms;
    }

    static void Main() {
        int[] arrival = {900, 940, 950, 1100, 1500, 1800};
        int[] departure = {910, 1200, 1120, 1130, 1900, 2000};
        Console.WriteLine("Minimum Platforms Required: " + MinPlatforms(arrival, departure));
    }
}
            

def min_platforms(arrival, departure):
    arrival.sort()
    departure.sort()

    n = len(arrival)
    platforms = 0
    max_platforms = 0
    i = 0
    j = 0

    while i < n and j < n:
        if arrival[i] < departure[j]:
            platforms += 1
            max_platforms = max(max_platforms, platforms)
            i += 1
        else:
            platforms -= 1
            j += 1

    return max_platforms

# Example usage
arrival = [900, 940, 950, 1100, 1500, 1800]
departure = [910, 1200, 1120, 1130, 1900, 2000]
print("Minimum Platforms Required:", min_platforms(arrival, departure))
            

import java.util.Arrays;

public class Main {
    public static int minPlatforms(int[] arrival, int[] departure) {
        Arrays.sort(arrival);
        Arrays.sort(departure);

        int n = arrival.length;
        int platforms = 0, maxPlatforms = 0;
        int i = 0, j = 0;

        while (i < n && j < n) {
            if (arrival[i] < departure[j]) {
                platforms++;
                maxPlatforms = Math.max(maxPlatforms, platforms);
                i++;
            } else {
                platforms--;
                j++;
            }
        }
        return maxPlatforms;
    }

    public static void main(String[] args) {
        int[] arrival = {900, 940, 950, 1100, 1500, 1800};
        int[] departure = {910, 1200, 1120, 1130, 1900, 2000};
        System.out.println("Minimum Platforms Required: " + minPlatforms(arrival, departure));
    }
}
            

function minPlatforms(arrival: number[], departure: number[]): number {
    arrival.sort((a, b) => a - b);
    departure.sort((a, b) => a - b);

    let n = arrival.length;
    let platforms = 0;
    let maxPlatforms = 0;
    let i = 0;
    let j = 0;

    while (i < n && j < n) {
        if (arrival[i] < departure[j]) {
            platforms++;
            maxPlatforms = Math.max(maxPlatforms, platforms);
            i++;
        } else {
            platforms--;
            j++;
        }
    }

    return maxPlatforms;
}

// Example usage
const arrival = [900, 940, 950, 1100, 1500, 1800];
const departure = [910, 1200, 1120, 1130, 1900, 2000];
console.log("Minimum Platforms Required:", minPlatforms(arrival, departure));
            
More Practice with the Below Articles:

Advantages of Greedy Algorithm

  1. Simplicity: Greedy algorithms are usually straightforward to understand and implement. They follow a step-by-step approach where the best possible decision is made at each stage based on the current information. This simplicity makes them easier to design and analyze compared to more complex algorithms.
  2. Efficiency: Greedy algorithms often have low time complexity and can run efficiently even for large input sizes. The greedy approach typically involves making local optimal choices, which can lead to faster execution times compared to exhaustive search or dynamic programming techniques.
  3. Memory efficiency: Greedy algorithms often require minimal memory usage. They usually don't need to store the entire problem space or maintain an extensive set of intermediate solutions. Instead, they only need to store the current best solution and update it as they progress.

Disadvantages of Greedy Algorithm

  1. Lack of global optimization: Greedy algorithms make locally optimal choices at each step without considering the overall solution. As a result, they may not always lead to the globally optimal solution. The greedy approach may overlook future consequences and make choices that seem optimal at the moment but turn out to be suboptimal in the long run.
  2. Lack of backtracking: Greedy algorithms do not backtrack or reconsider decisions made earlier. Once a choice is made, it is not revisited, even if better options become available later. This can lead to suboptimal solutions or even incorrect results.
  3. Dependency on problem structure: Greedy algorithms heavily rely on the problem's structure and the specific criteria used to make greedy choices. Different problem structures may require different criteria for selecting the next step, and the same greedy algorithm may not work well for all problem instances.
Summary

Hence, we have covered all the concepts of greedy algorithms, their characteristics, advantages, disadvantages, types, and examples. A greedy algorithm does not always lead to the global optimal solution. All problems that can be solved using a greedy approach exhibit greedy choice and optimal substructure properties. To test your understanding of the concepts of the greedy approach, enroll in our Best Free Dsa Course.

FAQs

It works in a top-down approach.

  1. Greedy Choice Property 
  2. Optimal Substructure

Yes, Greedy algorithms are very fast compared to their alternatives, such as dynamic programming.
Share Article
About Author
Amit Kumar Ghosh (SDE and Mentor at Scholarhat)

As a software developer with a wealth of experience, he brings a unique combination of technical acumen and a passion for mentorship to my role. With 6 years of experience, he has honed the skills in C/C++, Java, Python, SQL, C#, JavaScript, React, Java Spring etc. and has a proven track record of delivering high-quality, scalable software solutions and core Computer fundamental knowledge DSA, OOPs, CN, OS etc.

As a teacher, his approach revolves around interactive techniques, prioritizing hands-on learning and real-world projects. He explains concepts clearly, offer practical examples, and encourage questions to foster a supportive environment.
Accept cookies & close this